上传批量生成程序

This commit is contained in:
bigsk 2020-01-11 20:24:02 +08:00 committed by Gitee
parent 6ce70e1e4b
commit 827670b3d2
8 changed files with 583 additions and 0 deletions

View File

@ -0,0 +1,114 @@
import tensorflow as tf
import numpy as np
import random
import pickle
from PIL import Image
from qrcode import make as makeqr
from dnnlib import tflib
import time, os, hashlib
def main():
# Define global variables.
seed = random.randint(0,10000000)
available_charaters = {'Anmicius', 'Camil', 'Grey', 'King', 'Ray'}
# Select charater and input seed.
selected_character = 'Anmicius'
while selected_character not in available_charaters:
selected_character = input('Type in the character you want to draw, e.g. \"Anmicius\" and \"Ray\" (no quotes).\n')
if selected_character not in available_charaters:
print('You typed in a character that is not available or you made a misspell, try agian.')
seed_str = ''
if seed_str != '':
if seed_str.isdigit():
seed = int(seed_str.encode('utf-8'))
else:
seed = int(hashlib.sha256(seed_str.encode('utf-8')).hexdigest(), 16) % 10**8
print('INFO: Setting up variables...')
tflib.init_tf()
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
print('INFO: Loading pretrained model...')
Gs = pickle.load(open('models/network-%s-gs.pkl' % selected_character, 'rb'))
latents = rnd.randn(1, Gs.input_shape[1])
print('INFO: Generating...')
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot by Rand0mZ.LiCloud provides computing resources. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
output_dir = os.path.join(os.path.dirname(os.getcwd()) , 'ARAGS/安迷修')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
im.save(os.path.join(output_dir, save_name))
print('INFO: Image %s is saved in directory.' % save_name)
print('INFO: All processes has done!')
print('Thank you for using this software and obeying the terms of use above.')
time.sleep(3)
def generate_image(model, save_path, selected_character, seed, amount):
tflib.init_tf()
print('INFO: Loading pretrained model...')
Gs = pickle.load(open(model, 'rb'))
if not os.path.isdir(save_path):
os.mkdir(save_path)
for i in range(1, amount + 1):
print('INFO: Generating image %d' %i)
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
latents = rnd.randn(1, Gs.input_shape[1])
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot CLI by Rand0mZ hence this image is not for commercial propose. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
im.save(os.path.join(save_path, save_name))
print('INFO: Image %s is saved to %s.\n' % (save_name, save_path))
seed += i - 1
if __name__ == "__main__":
main()

View File

@ -0,0 +1,114 @@
import tensorflow as tf
import numpy as np
import random
import pickle
from PIL import Image
from qrcode import make as makeqr
from dnnlib import tflib
import time, os, hashlib
def main():
# Define global variables.
seed = random.randint(0,10000000)
available_charaters = {'Anmicius', 'Camil', 'Grey', 'King', 'Ray'}
# Select charater and input seed.
selected_character = 'Camil'
while selected_character not in available_charaters:
selected_character = input('Type in the character you want to draw, e.g. \"Anmicius\" and \"Ray\" (no quotes).\n')
if selected_character not in available_charaters:
print('You typed in a character that is not available or you made a misspell, try agian.')
seed_str = ''
if seed_str != '':
if seed_str.isdigit():
seed = int(seed_str.encode('utf-8'))
else:
seed = int(hashlib.sha256(seed_str.encode('utf-8')).hexdigest(), 16) % 10**8
print('INFO: Setting up variables...')
tflib.init_tf()
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
print('INFO: Loading pretrained model...')
Gs = pickle.load(open('models/network-%s-gs.pkl' % selected_character, 'rb'))
latents = rnd.randn(1, Gs.input_shape[1])
print('INFO: Generating...')
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot by Rand0mZ.LiCloud provides computing resources. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
output_dir = os.path.join(os.path.dirname(os.getcwd()) , 'ARAGS/卡米尔')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
im.save(os.path.join(output_dir, save_name))
print('INFO: Image %s is saved in directory.' % save_name)
print('INFO: All processes has done!')
print('Thank you for using this software and obeying the terms of use above.')
time.sleep(3)
def generate_image(model, save_path, selected_character, seed, amount):
tflib.init_tf()
print('INFO: Loading pretrained model...')
Gs = pickle.load(open(model, 'rb'))
if not os.path.isdir(save_path):
os.mkdir(save_path)
for i in range(1, amount + 1):
print('INFO: Generating image %d' %i)
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
latents = rnd.randn(1, Gs.input_shape[1])
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot CLI by Rand0mZ hence this image is not for commercial propose. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
im.save(os.path.join(save_path, save_name))
print('INFO: Image %s is saved to %s.\n' % (save_name, save_path))
seed += i - 1
if __name__ == "__main__":
main()

View File

@ -0,0 +1,114 @@
import tensorflow as tf
import numpy as np
import random
import pickle
from PIL import Image
from qrcode import make as makeqr
from dnnlib import tflib
import time, os, hashlib
def main():
# Define global variables.
seed = random.randint(0,10000000)
available_charaters = {'Anmicius', 'Camil', 'Grey', 'King', 'Ray'}
# Select charater and input seed.
selected_character = 'Grey'
while selected_character not in available_charaters:
selected_character = input('Type in the character you want to draw, e.g. \"Anmicius\" and \"Ray\" (no quotes).\n')
if selected_character not in available_charaters:
print('You typed in a character that is not available or you made a misspell, try agian.')
seed_str = ''
if seed_str != '':
if seed_str.isdigit():
seed = int(seed_str.encode('utf-8'))
else:
seed = int(hashlib.sha256(seed_str.encode('utf-8')).hexdigest(), 16) % 10**8
print('INFO: Setting up variables...')
tflib.init_tf()
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
print('INFO: Loading pretrained model...')
Gs = pickle.load(open('models/network-%s-gs.pkl' % selected_character, 'rb'))
latents = rnd.randn(1, Gs.input_shape[1])
print('INFO: Generating...')
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot by Rand0mZ.LiCloud provides computing resources. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
output_dir = os.path.join(os.path.dirname(os.getcwd()) , 'ARAGS/格瑞')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
im.save(os.path.join(output_dir, save_name))
print('INFO: Image %s is saved in directory.' % save_name)
print('INFO: All processes has done!')
print('Thank you for using this software and obeying the terms of use above.')
time.sleep(3)
def generate_image(model, save_path, selected_character, seed, amount):
tflib.init_tf()
print('INFO: Loading pretrained model...')
Gs = pickle.load(open(model, 'rb'))
if not os.path.isdir(save_path):
os.mkdir(save_path)
for i in range(1, amount + 1):
print('INFO: Generating image %d' %i)
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
latents = rnd.randn(1, Gs.input_shape[1])
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot CLI by Rand0mZ hence this image is not for commercial propose. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
im.save(os.path.join(save_path, save_name))
print('INFO: Image %s is saved to %s.\n' % (save_name, save_path))
seed += i - 1
if __name__ == "__main__":
main()

View File

@ -0,0 +1,114 @@
import tensorflow as tf
import numpy as np
import random
import pickle
from PIL import Image
from qrcode import make as makeqr
from dnnlib import tflib
import time, os, hashlib
def main():
# Define global variables.
seed = random.randint(0,10000000)
available_charaters = {'Anmicius', 'Camil', 'Grey', 'King', 'Ray'}
# Select charater and input seed.
selected_character = 'King'
while selected_character not in available_charaters:
selected_character = input('Type in the character you want to draw, e.g. \"Anmicius\" and \"Ray\" (no quotes).\n')
if selected_character not in available_charaters:
print('You typed in a character that is not available or you made a misspell, try agian.')
seed_str = ''
if seed_str != '':
if seed_str.isdigit():
seed = int(seed_str.encode('utf-8'))
else:
seed = int(hashlib.sha256(seed_str.encode('utf-8')).hexdigest(), 16) % 10**8
print('INFO: Setting up variables...')
tflib.init_tf()
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
print('INFO: Loading pretrained model...')
Gs = pickle.load(open('models/network-%s-gs.pkl' % selected_character, 'rb'))
latents = rnd.randn(1, Gs.input_shape[1])
print('INFO: Generating...')
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot by Rand0mZ.LiCloud provides computing resources. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
output_dir = os.path.join(os.path.dirname(os.getcwd()) , 'ARAGS/金')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
im.save(os.path.join(output_dir, save_name))
print('INFO: Image %s is saved in directory.' % save_name)
print('INFO: All processes has done!')
print('Thank you for using this software and obeying the terms of use above.')
time.sleep(3)
def generate_image(model, save_path, selected_character, seed, amount):
tflib.init_tf()
print('INFO: Loading pretrained model...')
Gs = pickle.load(open(model, 'rb'))
if not os.path.isdir(save_path):
os.mkdir(save_path)
for i in range(1, amount + 1):
print('INFO: Generating image %d' %i)
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
latents = rnd.randn(1, Gs.input_shape[1])
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot CLI by Rand0mZ hence this image is not for commercial propose. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
im.save(os.path.join(save_path, save_name))
print('INFO: Image %s is saved to %s.\n' % (save_name, save_path))
seed += i - 1
if __name__ == "__main__":
main()

View File

@ -0,0 +1,114 @@
import tensorflow as tf
import numpy as np
import random
import pickle
from PIL import Image
from qrcode import make as makeqr
from dnnlib import tflib
import time, os, hashlib
def main():
# Define global variables.
seed = random.randint(0,10000000)
available_charaters = {'Anmicius', 'Camil', 'Grey', 'King', 'Ray'}
# Select charater and input seed.
selected_character = 'Ray'
while selected_character not in available_charaters:
selected_character = input('Type in the character you want to draw, e.g. \"Anmicius\" and \"Ray\" (no quotes).\n')
if selected_character not in available_charaters:
print('You typed in a character that is not available or you made a misspell, try agian.')
seed_str = ''
if seed_str != '':
if seed_str.isdigit():
seed = int(seed_str.encode('utf-8'))
else:
seed = int(hashlib.sha256(seed_str.encode('utf-8')).hexdigest(), 16) % 10**8
print('INFO: Setting up variables...')
tflib.init_tf()
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
print('INFO: Loading pretrained model...')
Gs = pickle.load(open('models/network-%s-gs.pkl' % selected_character, 'rb'))
latents = rnd.randn(1, Gs.input_shape[1])
print('INFO: Generating...')
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot by Rand0mZ.LiCloud provides computing resources. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
output_dir = os.path.join(os.path.dirname(os.getcwd()) , 'ARAGS/雷狮')
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
im.save(os.path.join(output_dir, save_name))
print('INFO: Image %s is saved in directory.' % save_name)
print('INFO: All processes has done!')
print('Thank you for using this software and obeying the terms of use above.')
time.sleep(3)
def generate_image(model, save_path, selected_character, seed, amount):
tflib.init_tf()
print('INFO: Loading pretrained model...')
Gs = pickle.load(open(model, 'rb'))
if not os.path.isdir(save_path):
os.mkdir(save_path)
for i in range(1, amount + 1):
print('INFO: Generating image %d' %i)
rnd = np.random.RandomState(seed)
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
latents = rnd.randn(1, Gs.input_shape[1])
images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
im = Image.fromarray(images[0], 'RGB')
qr = makeqr('This is an image automatically generated by Aotu Draw Bot CLI by Rand0mZ hence this image is not for commercial propose. Seed: %d' % seed)
w, h = im.size
qw, qh = qr.size
if qw > w:
qr = qr.resize((w, w))
elif qh > h:
qr = qr.resize((h, h))
qw, qh = qr.size
imd = im.load()
for i in range(w):
for j in range(h):
d = imd[i, j]
imd[i, j] = d[:-1] +((d[-1] | 1) if qr.getpixel((i%qw, j%qh)) else (d[-1] & ~1),)
print('Done!')
save_name = '%s_%d.png' % (selected_character, seed)
print('INFO: Saving %s' % save_name)
im.save(os.path.join(save_path, save_name))
print('INFO: Image %s is saved to %s.\n' % (save_name, save_path))
seed += i - 1
if __name__ == "__main__":
main()

View File

@ -0,0 +1,13 @@
import os
os.system('del ..\ARAGS\*.png /s/q')
for i in range(1,1001):
os.system('py Ray.py')
for i in range(1,1001):
os.system('py King.py')
for i in range(1,1001):
os.system('py Anmicius.py')
for i in range(1,1001):
os.system('py Camil.py')
for i in range(1,1001):
os.system('py Grey.py')