first version beta

This commit is contained in:
Bigsk 2023-01-18 17:03:53 +08:00
parent 8e3b628d9c
commit e9113cc3c6
3 changed files with 144 additions and 1 deletions

View File

@ -1,3 +1,35 @@
# arnrs
Aircraft Registration Number Recognition System
## Installation
1. Install [Pytorch Engine](https://pytorch.org/get-started/locally/) (CUDA, ROCm or CPU) with anaconda
2. Clone Detectron2 Framework from Github with follow command:
`git clone https://github.com/facebookresearch/detectron2.git`
3. Run Detectron2 Installtion with follow command:
`python -m pip install -e detectron2 -i https://pypi.tuna.tsinghua.edu.cn/simple`
4. Install [PaddlePaddle Engine](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/conda/windows-conda.html) (CUDA, ROCm or CPU) with anaconda
5. Install easyocr package with follow command:
`pip install easyocr -i https://pypi.tuna.tsinghua.edu.cn/simple`
6. Install paddleocr package with follow command:
`pip install paddleocr -i https://pypi.tuna.tsinghua.edu.cn/simple`
7. To solve opencv version issue, reinstall opencv and opencv-headless with follow commands (There may be some errors happen, you can ignore it)
`pip install opencv-python==4.2.0.34 -i https://pypi.tuna.tsinghua.edu.cn/simple`
`pip install opencv-python-headless==4.2.0.34 -i https://pypi.tuna.tsinghua.edu.cn/simple`
8. Replace packages rely in paddleocr from "tools.infer" to "paddleocr.tools.infer" with text editor, it's a bug from paddleocr
9. Finally enjoy it :)

39
detector.py Normal file
View File

@ -0,0 +1,39 @@
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2 import model_zoo
class Detector:
def __init__(self, mode = "zoo", model = "COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml", device = "cpu") -> None:
self.cfg = get_cfg()
if mode == "zoo":
# Load model config and pretrained model
self.cfg.merge_from_file(model_zoo.get_config_file(model))
self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(model)
self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
self.cfg.MODEL.DEVICE = device
self.predictor = DefaultPredictor(self.cfg)
def image(self, image):
predictions = self.predictor(image)
viz = Visualizer(image[:,:,::-1], metadata = MetadataCatalog.get(self.cfg.DATASETS.TRAIN[0]))
#instance_mode = ColorMode.IMAGE_BW
output = viz.draw_instance_predictions(predictions["instances"].to("cpu"))
result = []
for i in range(len(predictions["instances"].scores)):
result.append(
{
"box": tuple([float(pos) for pos in [obj for obj in predictions["instances"].pred_boxes[i]][0]]),
"score": float(predictions["instances"].scores[i]),
"class": MetadataCatalog.get(self.cfg.DATASETS.TRAIN[0]).thing_classes[predictions["instances"].pred_classes[i]]
}
)
return output.get_image()[:,:,::-1], tuple(result)

72
main.py Normal file
View File

@ -0,0 +1,72 @@
import os
from detector import Detector
from paddleocr import PaddleOCR
import cv2
import easyocr
import requests
class number(object):
def __init__(self, gpu=False, times=2):
assert type(gpu) is bool
assert type(times) is int and times >= 1
self.gpu = gpu
self.times = times
# Init detector and OCR
self.__detector = Detector(device="gpu" if gpu else "cpu")
self.__eocr = easyocr.Reader(['ch_sim', 'en'], gpu=self.gpu)
self.__pocr = PaddleOCR(use_angle_cls=True, use_gpu=self.gpu, show_log=False)
def recognize(self, image):
'''
Recognize aircraft registration number with detection
and ocr powered by pytorch and paddlepaddle engine.
:image Accept numpy array or image file path
'''
if type(image) is str:
path = os.path.abspath(image)
image = cv2.imread(path)
result = self.__detector.image(image)
# Subjective judgment
area_max = 0
area_index = 0
for i in range(len(result[1])):
d = result[1][i]
this_area = ((d["box"][1] - d["box"][0]) ** 2 + (d["box"][3] - d["box"][2]) ** 2) ** 0.5
if this_area > area_max and result[1][i]["class"] == "airplane":
area_max = this_area
area_index = i
i = result[1][area_index]
img = image[int(i["box"][1]):int(i["box"][3]), int(i["box"][0]):int(i["box"][2])]
ocr_result = []
ocr_filter = []
for _ in range(2):
eocr_result = self.__eocr.readtext(img, detail=1)
pocr_result = self.__pocr.ocr(img, cls=True)
for e in eocr_result:
if e[2] > 0.6 and e[1] not in ocr_filter:
ocr_result.append(
(tuple([tuple(i) for i in e[0]]), e[1], e[2])
)
ocr_filter.append(e[1])
for p in pocr_result[0]:
if p[1][1] > 0.6 and e[1][0] not in ocr_filter:
ocr_result.append(
(tuple([tuple(i) for i in p[0]]), e[1][0], e[1][1])
)
ocr_filter.append(e[1][0])
# Read database
for i in ocr_result:
db = requests.post("http://www.airframes.org/", data={"reg1": i[1]}).text
if "No data found on this query." not in db:
return i
return None