import os import threading import csv import time import itertools from detector import Detector from paddleocr import PaddleOCR import cv2 import easyocr import requests class number(object): def __init__(self, gpu=False, times=1, filter=0.8, ua="ARNRS", debug=False): assert type(gpu) is bool assert type(times) is int and times >= 1 self.gpu = gpu self.times = times self.similar = {"8": "B", "O": "0", "-": "—", "1": "/", "l": "I", "2": "Z", "4": "A"} self.ua = ua self.filter = filter self.debug = debug # Init detector and OCR self.__detector = Detector(device="gpu" if gpu else "cpu") self.__eocr = easyocr.Reader(['ch_sim', 'en'], gpu=self.gpu) self.__pocr = PaddleOCR(use_angle_cls=True, use_gpu=self.gpu, show_log=debug) # Init database self.__database = {} i = 0 with open('aircraftDatabase.csv', "r", encoding='utf-8') as fb: for row in csv.reader(fb, skipinitialspace=True): if not i: keys = row else: self.__database[row[1]] = dict(zip(keys, row)) self.__database[row[1].replace("-", "")] = dict(zip(keys, row)) i += 1 # Try to update database ''' update_database_daemon_thread = threading.Thread(target=self.__update_database_daemon, name="Update Database Daemon Thread") update_database_daemon_thread.daemon = True update_database_daemon_thread.start() ''' def __update_database_daemon(self): while True: update_database_thread = threading.Thread(target=self.__update_database, name="Update Database Thread") update_database_thread.daemon = True update_database_thread.start() time.sleep(60 * 60 * 1) def __update_database(self): f = 0 while True: try: database = requests.get("https://opensky-network.org/datasets/metadata/aircraftDatabase.csv", headers={"user-agent": self.ua}).text except Exception as e: print("Failed to update local registration number database,", e, ", retrying... Times: ", f+1) f += 1 if f >= 10: break else: with open('aircraftDatabase.csv', "w+", encoding='utf-8') as fb: fb.write(database) self.__database = [] i = 0 with open('aircraftDatabase.csv', "r", encoding='utf-8') as fb: for row in csv.reader(fb, skipinitialspace=True): if not i: keys = row else: self.__database.append(dict(zip(keys, row))) i += 1 break def search(self, keyword): ''' Search a plane by it registration number :keyword Registration number ''' if keyword.upper() in self.__database.keys() and not keyword.isdigit(): return self.__database[keyword.upper()] # Similar characters replace self.similar = {**self.similar, **dict(zip(self.similar.values(), self.similar.keys()))} condition = [] for i in range(1, len(self.similar.items()) + 1): condition.extend(list(itertools.combinations(self.similar.items(), i))) for c in condition: for c_i in c: keyword_temp = keyword.replace(c_i[0], c_i[1]) if keyword_temp.upper() in self.__database.keys(): return self.__database[keyword_temp.upper()] if keyword.upper() in self.__database.keys() and keyword.isdigit(): return self.__database[keyword.upper()] return None def recognize(self, image): ''' Recognize aircraft registration number with detection and ocr powered by pytorch and paddlepaddle engine. :image Accept numpy array or image file path ''' if type(image) is str: path = os.path.abspath(image) image = cv2.imread(path) result = self.__detector.image(image) # Subjective judgment area_max = 0 area_index = 0 for i in range(len(result[1])): d = result[1][i] this_area = ((d["box"][1] - d["box"][0]) ** 2 + (d["box"][3] - d["box"][2]) ** 2) ** 0.5 if this_area > area_max and result[1][i]["class"] == "airplane": area_max = this_area area_index = i i = result[1][area_index] img = image[int(i["box"][1]):int(i["box"][3]), int(i["box"][0]):int(i["box"][2])] ocr_result = [] ocr_filter = [] for _ in range(self.times): eocr_result = self.__eocr.readtext(img, detail=1) if self.debug: print(eocr_result) print("------------------------------") pocr_result = self.__pocr.ocr(img, cls=True) if self.debug: print(pocr_result) print("------------------------------") for e in eocr_result: if e[2] > self.filter and e[1] not in ocr_filter: ocr_result.append( (tuple([tuple(i) for i in e[0]]), e[1], e[2]) ) ocr_filter.append(e[1]) for p in pocr_result[0]: if p[1][1] > self.filter and p[1][0] not in ocr_filter: ocr_result.append( (tuple([tuple(i) for i in p[0]]), p[1][0], p[1][1]) ) ocr_filter.append(p[1][0]) # OCR result tidy up # Read database for i in ocr_result: r = self.search(i[1]) if r: return r if self.debug: print(ocr_result) return None if __name__ == "__main__": num = number() for pic in os.listdir("test"): print(pic, ":") print(num.recognize(os.path.join("test", pic)))