arnrs/main.py
2023-01-22 09:59:14 +08:00

248 lines
10 KiB
Python

import os
import threading
import csv
import time
import itertools
from detector import Detector
from paddleocr import PaddleOCR
import cv2
import easyocr
import requests
class number(object):
def __init__(self, gpu=False, times=1, filter=0.8, ua="ARNRS", debug=False):
assert type(gpu) is bool
assert type(times) is int and times >= 1
self.gpu = gpu
self.times = times
self.similar = {"8": "B", "O": "0", "-": "", "1": "/", "l": "I", "2": "Z", "4": "A"}
self.ua = ua
self.filter = filter
self.debug = debug
# Init detector and OCR
self.__detector = Detector(device="gpu" if gpu else "cpu")
self.__eocr = easyocr.Reader(['ch_sim', 'en'], gpu=self.gpu)
self.__pocr = PaddleOCR(use_angle_cls=True, use_gpu=self.gpu, show_log=debug)
# Init database
self.__database = {}
i = 0
with open('aircraftDatabase.csv', "r", encoding='utf-8') as fb:
for row in csv.reader(fb, skipinitialspace=True):
if not i:
keys = row
else:
self.__database[row[1]] = dict(zip(keys, row))
self.__database[row[1].replace("-", "")] = dict(zip(keys, row))
i += 1
# Try to update database
'''
update_database_daemon_thread = threading.Thread(target=self.__update_database_daemon, name="Update Database Daemon Thread")
update_database_daemon_thread.daemon = True
update_database_daemon_thread.start()
'''
def __update_database_daemon(self):
while True:
update_database_thread = threading.Thread(target=self.__update_database, name="Update Database Thread")
update_database_thread.daemon = True
update_database_thread.start()
time.sleep(60 * 60 * 1)
def __update_database(self):
f = 0
while True:
try:
database = requests.get("https://opensky-network.org/datasets/metadata/aircraftDatabase.csv", headers={"user-agent": self.ua}).text
except Exception as e:
print("Failed to update local registration number database,", e, ", retrying... Times: ", f+1)
f += 1
if f >= 10:
break
else:
with open('aircraftDatabase.csv', "w+", encoding='utf-8') as fb:
fb.write(database)
self.__database = []
i = 0
with open('aircraftDatabase.csv', "r", encoding='utf-8') as fb:
for row in csv.reader(fb, skipinitialspace=True):
if not i:
keys = row
else:
self.__database.append(dict(zip(keys, row)))
i += 1
break
def __distance(self, p1, p2):
return ((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5
def __closest_pair(self, X, Y):
if len(X) <= 3:
return min([self.__distance(X[i], X[j]) for i in range(len(X)) for j in range(i + 1, len(X))])
mid = len(X) // 2
XL, XR = X[:mid], X[mid:]
YL, YR = [p for p in Y if p in XL], [p for p in Y if p in XR]
d = min(self.__closest_pair(XL, YL), self.__closest_pair(XR, YR))
line = (X[mid][0] + X[mid-1][0]) / 2
YS = [p for p in Y if abs(p[0] - line) < d]
return min(d, self.__closest_split_pair(YS, d))
def __closest_split_pair(self, Y, d):
n = len(Y)
for i in range(n - 1):
for j in range(i + 1, min(i + 8, n)):
if self.__distance(Y[i], Y[j]) < d:
d = self.__distance(Y[i], Y[j])
return d
def __dis(self, p1, p2):
X = p1 + p2
Y = sorted(X, key=lambda p: (p[0], p[1]))
return self.__closest_pair(X, Y)
def search(self, keyword):
'''
Search a plane by it registration number
:keyword Registration number
'''
if keyword.upper() in self.__database.keys() and not keyword.isdigit():
return self.__database[keyword.upper()]
# Similar characters replace
self.similar = {**self.similar, **dict(zip(self.similar.values(), self.similar.keys()))}
condition = []
for i in range(1, len(self.similar.items()) + 1):
condition.extend(list(itertools.combinations(self.similar.items(), i)))
for c in condition:
for c_i in c:
keyword_temp = keyword.replace(c_i[0], c_i[1])
if keyword_temp.upper() in self.__database.keys():
return self.__database[keyword_temp.upper()]
if keyword.upper() in self.__database.keys() and keyword.isdigit():
return self.__database[keyword.upper()]
return None
def recognize(self, image):
'''
Recognize aircraft registration number with detection
and ocr powered by pytorch and paddlepaddle engine.
:image Accept numpy array or image file path
'''
if type(image) is str:
path = os.path.abspath(image)
image = cv2.imread(path)
result = self.__detector.image(image)
# Subjective judgment
area_max = 0
area_index = 0
for i in range(len(result[1])):
d = result[1][i]
this_area = ((d["box"][1] - d["box"][0]) ** 2 + (d["box"][3] - d["box"][2]) ** 2) ** 0.5
if this_area > area_max and result[1][i]["class"] == "airplane":
area_max = this_area
area_index = i
i = result[1][area_index]
img = image[int(i["box"][1]):int(i["box"][3]), int(i["box"][0]):int(i["box"][2])]
ocr_result = []
ocr_filter = []
for _ in range(self.times):
# OCR recognize
pocr_result = self.__pocr.ocr(img, cls=True)
if self.debug:
print(pocr_result)
print("------------------------------B-")
eocr_result = self.__eocr.readtext(img, detail=1)
if self.debug:
print(eocr_result)
print("------------------------------A-")
# OCR results tidy up
for i in range(len(pocr_result[0])):
for j in range(len(pocr_result[0])):
if self.debug:
print("------------------------------D-")
print(pocr_result[0][i][0], pocr_result[0][j][0])
if i != j and len(pocr_result[0][i][0]) == 4 and len(pocr_result[0][j][0]) == 4 and self.__dis(pocr_result[0][i][0], pocr_result[0][j][0]) < 5:
if self.debug:
print("D Appended")
pocr_result.append(((pocr_result[0][i][0], pocr_result[0][j][0]), pocr_result[0][i][1][1] + pocr_result[0][j][1][1], (pocr_result[0][i][1][2] + pocr_result[0][j][1][2]) / 2))
pocr_result.append(((pocr_result[0][j][0], pocr_result[0][i][0]), pocr_result[0][j][1][1] + pocr_result[0][i][1][1], (pocr_result[0][j][1][2] + pocr_result[0][i][1][2]) / 2))
else:
if self.debug:
disout = 0
if len(eocr_result[i][0]) == 4 and len(eocr_result[j][0]) == 4:
disout = self.__dis(pocr_result[0][i][0], pocr_result[0][j][0])
print(i != j, len(pocr_result[0][i][0]) == 4, len(pocr_result[0][j][0]) == 4, disout)
print("------------------------------D-")
for i in range(len(eocr_result)):
for j in range(len(eocr_result)):
if self.debug:
print("------------------------------C-")
print(eocr_result[i][0], eocr_result[j][0])
if i != j and len(eocr_result[i][0]) == 4 and len(eocr_result[j][0]) == 4 and self.__dis(eocr_result[i][0], eocr_result[j][0]) < 5:
if self.debug:
print("C Appended")
eocr_result.append(((eocr_result[i][0], eocr_result[j][0]), eocr_result[i][1] + eocr_result[j][1], (eocr_result[i][2] + eocr_result[j][2]) / 2))
eocr_result.append(((eocr_result[j][0], eocr_result[i][0]), eocr_result[j][1] + eocr_result[i][1], (eocr_result[j][2] + eocr_result[i][2]) / 2))
else:
if self.debug:
disout = 0
if len(eocr_result[i][0]) == 4 and len(eocr_result[j][0]) == 4:
disout = self.__dis(eocr_result[i][0], eocr_result[j][0])
print(i != j, len(eocr_result[i][0]) == 4, len(eocr_result[j][0]) == 4, disout)
print("------------------------------C-")
if self.debug:
print(pocr_result)
print(eocr_result)
# OCR results sum up
for p in pocr_result[0]:
if p[1][1] > self.filter and p[1][0] not in ocr_filter:
ocr_result.append(
(tuple([tuple(i) for i in p[0]]), p[1][0], p[1][1])
)
ocr_filter.append(p[1][0])
for e in eocr_result:
if e[2] > self.filter and e[1] not in ocr_filter:
ocr_result.append(
(tuple([tuple(i) for i in e[0]]), e[1], e[2])
)
ocr_filter.append(e[1])
ocr_result = sorted(ocr_result, key=lambda x:len(x[1]), reverse=True)
# Read database
for i in ocr_result:
r = self.search(i[1])
if r:
return r
if self.debug:
print(ocr_result)
return None
if __name__ == "__main__":
import json
num = number()
os.makedirs("out", exist_ok=True)
for pic in os.listdir("test"):
with open(os.path.join("out", f"{pic}.json"), "w+") as fb:
fb.write(json.dumps(num.recognize(os.path.join("test", pic))))