// // This file is part of Dire Wolf, an amateur radio packet TNC. // // Copyright (C) 2011, 2012, 2013, 2015 John Langner, WB2OSZ // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. // /*------------------------------------------------------------------ * * Name: dsp.c * * Purpose: Generate the filters used by the demodulators. * *----------------------------------------------------------------*/ #include "direwolf.h" #include <stdlib.h> #include <stdio.h> #include <math.h> #include <unistd.h> #include <string.h> #include <ctype.h> #include <assert.h> #include "audio.h" #include "fsk_demod_state.h" #include "fsk_gen_filter.h" #include "textcolor.h" #include "dsp.h" //#include "fsk_demod_agc.h" /* for M_FILTER_SIZE, etc. */ #define MIN(a,b) ((a)<(b)?(a):(b)) #define MAX(a,b) ((a)>(b)?(a):(b)) // Don't remove this. It serves as a reminder that an experiment is underway. #if defined(TUNE_MS_FILTER_SIZE) || defined(TUNE_AGC_FAST) || defined(TUNE_LPF_BAUD) || defined(TUNE_PLL_LOCKED) || defined(TUNE_PROFILE) #define DEBUG1 1 // Don't remove this. #endif /*------------------------------------------------------------------ * * Name: window * * Purpose: Filter window shape functions. * * Inputs: type - BP_WINDOW_HAMMING, etc. * size - Number of filter taps. * j - Index in range of 0 to size-1. * * Returns: Multiplier for the window shape. * *----------------------------------------------------------------*/ float window (bp_window_t type, int size, int j) { float center; float w; center = 0.5 * (size - 1); switch (type) { case BP_WINDOW_COSINE: w = cos((j - center) / size * M_PI); //w = sin(j * M_PI / (size - 1)); break; case BP_WINDOW_HAMMING: w = 0.53836 - 0.46164 * cos((j * 2 * M_PI) / (size - 1)); break; case BP_WINDOW_BLACKMAN: w = 0.42659 - 0.49656 * cos((j * 2 * M_PI) / (size - 1)) + 0.076849 * cos((j * 4 * M_PI) / (size - 1)); break; case BP_WINDOW_FLATTOP: w = 1.0 - 1.93 * cos((j * 2 * M_PI) / (size - 1)) + 1.29 * cos((j * 4 * M_PI) / (size - 1)) - 0.388 * cos((j * 6 * M_PI) / (size - 1)) + 0.028 * cos((j * 8 * M_PI) / (size - 1)); break; case BP_WINDOW_TRUNCATED: default: w = 1.0; break; } return (w); } /*------------------------------------------------------------------ * * Name: gen_lowpass * * Purpose: Generate low pass filter kernel. * * Inputs: fc - Cutoff frequency as fraction of sampling frequency. * filter_size - Number of filter taps. * wtype - Window type, BP_WINDOW_HAMMING, etc. * * Outputs: lp_filter * *----------------------------------------------------------------*/ void gen_lowpass (float fc, float *lp_filter, int filter_size, bp_window_t wtype) { int j; float G; #if DEBUG1 text_color_set(DW_COLOR_DEBUG); dw_printf ("Lowpass, size=%d, fc=%.2f\n", filter_size, fc); dw_printf (" j shape sinc final\n"); #endif assert (filter_size >= 3 && filter_size <= MAX_FILTER_SIZE); for (j=0; j<filter_size; j++) { float center; float sinc; float shape; center = 0.5 * (filter_size - 1); if (j - center == 0) { sinc = 2 * fc; } else { sinc = sin(2 * M_PI * fc * (j-center)) / (M_PI*(j-center)); } shape = window (wtype, filter_size, j); lp_filter[j] = sinc * shape; #if DEBUG1 dw_printf ("%6d %6.2f %6.3f %6.3f\n", j, shape, sinc, lp_filter[j] ) ; #endif } /* * Normalize lowpass for unity gain at DC. */ G = 0; for (j=0; j<filter_size; j++) { G += lp_filter[j]; } for (j=0; j<filter_size; j++) { lp_filter[j] = lp_filter[j] / G; } } /*------------------------------------------------------------------ * * Name: gen_bandpass * * Purpose: Generate band pass filter kernel. * * Inputs: f1 - Lower cutoff frequency as fraction of sampling frequency. * f2 - Upper cutoff frequency... * filter_size - Number of filter taps. * wtype - Window type, BP_WINDOW_HAMMING, etc. * * Outputs: bp_filter * * Reference: http://www.labbookpages.co.uk/audio/firWindowing.html * * Does it need to be an odd length? * *----------------------------------------------------------------*/ void gen_bandpass (float f1, float f2, float *bp_filter, int filter_size, bp_window_t wtype) { int j; float w; float G; float center = 0.5 * (filter_size - 1); #if DEBUG1 text_color_set(DW_COLOR_DEBUG); dw_printf ("Bandpass, size=%d\n", filter_size); dw_printf (" j shape sinc final\n"); #endif assert (filter_size >= 3 && filter_size <= MAX_FILTER_SIZE); for (j=0; j<filter_size; j++) { float sinc; float shape; if (j - center == 0) { sinc = 2 * (f2 - f1); } else { sinc = sin(2 * M_PI * f2 * (j-center)) / (M_PI*(j-center)) - sin(2 * M_PI * f1 * (j-center)) / (M_PI*(j-center)); } shape = window (wtype, filter_size, j); bp_filter[j] = sinc * shape; #if DEBUG1 dw_printf ("%6d %6.2f %6.3f %6.3f\n", j, shape, sinc, bp_filter[j] ) ; #endif } /* * Normalize bandpass for unity gain in middle of passband. * Can't use same technique as for lowpass. * Instead compute gain in middle of passband. * See http://dsp.stackexchange.com/questions/4693/fir-filter-gain */ w = 2 * M_PI * (f1 + f2) / 2; G = 0; for (j=0; j<filter_size; j++) { G += 2 * bp_filter[j] * cos((j-center)*w); // is this correct? } #if DEBUG1 dw_printf ("Before normalizing, G=%.3f\n", G); #endif for (j=0; j<filter_size; j++) { bp_filter[j] = bp_filter[j] / G; } } /* end dsp.c */